- Home
- Standard 12
- Mathematics
If ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
r&{2r - 1}&{3r - 2} \\
{\frac{n}{2}}&{n - 1}&a \\
{\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)}
\end{array}} \right|$ then the value of $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $
depends only on $a$
depends only on $n$
depends both on $a$ and $n$
is independent of both $a$ and $n$
Solution
$\sum\limits_{r = 1}^{n – 1} {r = 1 + 2 + 3 + … + \left( {n – 1} \right)} = \frac{{n\left( {n – 1} \right)}}{2}$
$\sum\limits_{r = 1}^{n – 1} {\left( {2r – 1} \right) = 1 + 3 + 5} $
$ + … + \left[ {2\left( {n – 1} \right) – 2} \right] = {\left( {n – 1} \right)^2}$
$\sum\limits_{r = 1}^{n – 1} {\left( {3r – 2} \right)} = 1 + 4 + 7 + .. + \left( {3n – 3 – 2} \right)$
$ = \frac{{\left( {n – 1} \right)\left( {3n – 4} \right)}}{2}$
$\therefore \sum\limits_{r = 1}^{n – 1} {{\Delta _r}} $
$ = \begin{array}{*{20}{c}}
{\sum r }&{\sum {\left( {2r – 1} \right)} }&{\sum {\left( {3r – 2} \right)} }\\
{\frac{n}{2}}&{n – 1}&a\\
{\frac{{n\left( {n – 1} \right)}}{2}}&{{{\left( {n – 1} \right)}^2}}&{\frac{{\left( {n – 1} \right)\left( {3n – 4} \right)}}{2}}
\end{array}$
$\sum\limits_{r = 1}^{n – 1} {{\Delta _r}} $ consists of $(n-1)$ determinats in $L.H.S.$ and in $R.H.S.$ every constituents of frist row consists of $(n-1)$ elements and hence it can be splitted into sum of $(n-1)$ determinats.
$\therefore \sum\limits_{r = 1}^{n – 1} {{\Delta _r}} $
$ = \begin{array}{*{20}{c}}
{\frac{{n\left( {n – 1} \right)}}{2}}&{{{\left( {n – 1} \right)}^2}}&{\frac{{\left( {n – 1} \right)\left( {3n – 4} \right)}}{2}}\\
{\frac{n}{2}}&{n – 1}&a\\
{\frac{{n\left( {n – 1} \right)}}{2}}&{{{\left( {n – 1} \right)}^2}}&{\frac{{\left( {n – 1} \right)\left( {3n – 4} \right)}}{2}}
\end{array}$
($\because $ ${R_1}$ and ${R_3}$ are identical)
Hence, value of $\sum\limits_{r = 1}^{n – 1} {{\Delta _r}} $ is independent of both $'a'$ and $'n'$.