3 and 4 .Determinants and Matrices
hard

If ${\Delta _r} = \left| {\begin{array}{*{20}{c}}
  r&{2r - 1}&{3r - 2} \\ 
  {\frac{n}{2}}&{n - 1}&a \\ 
  {\frac{1}{2}n\left( {n - 1} \right)}&{{{\left( {n - 1} \right)}^2}}&{\frac{1}{2}\left( {n - 1} \right)\left( {3n - 4} \right)} 
\end{array}} \right|$ then the value of $\sum\limits_{r = 1}^{n - 1} {{\Delta _r}} $

A

depends only on $a$

B

depends only on $n$

C

depends both on $a$ and $n$

D

is independent of both $a$ and $n$

(JEE MAIN-2014)

Solution

$\sum\limits_{r = 1}^{n – 1} {r = 1 + 2 + 3 + … + \left( {n – 1} \right)}  = \frac{{n\left( {n – 1} \right)}}{2}$

$\sum\limits_{r = 1}^{n – 1} {\left( {2r – 1} \right) = 1 + 3 + 5} $

                            $ + … + \left[ {2\left( {n – 1} \right) – 2} \right] = {\left( {n – 1} \right)^2}$

$\sum\limits_{r = 1}^{n – 1} {\left( {3r – 2} \right)}  = 1 + 4 + 7 + .. + \left( {3n – 3 – 2} \right)$

                           $ = \frac{{\left( {n – 1} \right)\left( {3n – 4} \right)}}{2}$

$\therefore \sum\limits_{r = 1}^{n – 1} {{\Delta _r}} $

$ = \begin{array}{*{20}{c}}
{\sum r }&{\sum {\left( {2r – 1} \right)} }&{\sum {\left( {3r – 2} \right)} }\\
{\frac{n}{2}}&{n – 1}&a\\
{\frac{{n\left( {n – 1} \right)}}{2}}&{{{\left( {n – 1} \right)}^2}}&{\frac{{\left( {n – 1} \right)\left( {3n – 4} \right)}}{2}}
\end{array}$

$\sum\limits_{r = 1}^{n – 1} {{\Delta _r}} $ consists of $(n-1)$  determinats in $L.H.S.$ and in $R.H.S.$ every constituents of frist row consists of $(n-1)$ elements and hence it can be splitted into sum of $(n-1)$ determinats.

$\therefore \sum\limits_{r = 1}^{n – 1} {{\Delta _r}} $

$ = \begin{array}{*{20}{c}}
{\frac{{n\left( {n – 1} \right)}}{2}}&{{{\left( {n – 1} \right)}^2}}&{\frac{{\left( {n – 1} \right)\left( {3n – 4} \right)}}{2}}\\
{\frac{n}{2}}&{n – 1}&a\\
{\frac{{n\left( {n – 1} \right)}}{2}}&{{{\left( {n – 1} \right)}^2}}&{\frac{{\left( {n – 1} \right)\left( {3n – 4} \right)}}{2}}
\end{array}$

($\because $ ${R_1}$ and ${R_3}$ are identical)

Hence, value of $\sum\limits_{r = 1}^{n – 1} {{\Delta _r}} $ is independent of both $'a'$ and $'n'$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.